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Method of moments for the dilute granular flow of inelastic spheres

Matteo Strumendo and Paolo Canu*
DIPIC—Dipartimento di Principi e Impianti di Ingegneria Chimica, Universita` di Padova, 35131 Padova, Italy

~Received 15 March 2002; published 10 October 2002!

Some peculiar features of granular materials~smooth, identical spheres! in rapid flow are the normal pres-
sure differences and the related anisotropy of the velocity distribution functionf (1). Kinetic theories have been
proposed that account for the anisotropy, mostly based on a generalization of the Chapman-Enskog expansion
@N. Sela and I. Goldhirsch, J. Fluid Mech.361, 41 ~1998!#. In the present paper, we approach the problem
differently by means of the method of moments; previously, similar theories have been constructed for the
nearly elastic behavior of granular matter but were not able to predict the normal pressures differences. To
overcome these restrictions, we use as an approximation of thef (1) a truncated series expansion in Hermite
polynomials around the Maxwellian distribution function. We used the approximatedf (1) to evaluate the
collisional source term and calculated all the resulting integrals; also, the difference in the mean velocity of the
two colliding particles has been taken into account. To simulate the granular flows, all the second-order
moment balances are considered together with the mass and momentum balances. In balance equations of the
Nth-order moments, the (N11)th-order moments~and their derivatives! appear: we therefore introduced
closure equations to express them as functions of lower-order moments by a generalization of the ‘‘elementary
kinetic theory,’’ instead of the classical procedure of neglecting the (N11)th-order moments and their deriva-
tives. We applied the model to the translational flow on an inclined chute obtaining the profiles of the solid
volumetric fraction, the mean velocity, and all the second-order moments. The theoretical results have been
compared with experimental data@E. Azanza, F. Chevoir, and P. Moucheront, J. Fluid Mech.400, 199 ~1999!;
T. G. Drake, J. Fluid Mech.225, 121 ~1991!# and all the features of the flow are reflected by the model: the
decreasing exponential profile of the solid volumetric fraction, the parabolic shape of the mean velocity, the
constancy of the granular temperature and of its components. Besides, the model predicts the normal pressures
differences, typical of the granular materials.

DOI: 10.1103/PhysRevE.66.041304 PACS number~s!: 45.70.2n, 05.20.Dd, 83.50.Ha, 83.60.Hc
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I. INTRODUCTION

In recent years, many efforts have been made to obta
better understanding of the granular matter, owing to
large number of industrial processes that involve granu
materials. In the literature@1,2#, the regimes of flow of a
granular material have been classified as frictional, co
sional, translational, and viscous flow. Theoretical work
the dynamics of granular matter reflects the classification
the regimes. For the frictional regime, a basic idea has b
to extend to the granular state the Coulomb friction la
Sokolovskij @3# introduced the Mohr-Coulomb criterion i
the continuum~static! balances of the forces for a yieldin
granular material; others@4,5# generalized to a granular ma
terial concepts of the theory of plasticity~yielding criteria,
particularly the Mohr-Coulomb criterion, and the flow rule!
in order to describe the transition from static to dynam
behavior and the slow movement of the material. These~or
similar! models have been used subsequently to simulate
flow on inclined chutes@6,7# or the shear flow@8#. Another
approach was carried on by Cowin@9–14# ~but also Jenkins
@15#! and was based on continuum thermodynamic consi
ations@16,17# and on the analogy with models of liquid cry
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tals and polar fluids@18,19#; his work resulted in the intro-
duction of the density gradient in the constitutive relations
the granular material. A point of view close to that of Cow
was developed by Kanatani@20# who applied methods take
from the theories of micropolar fluids@21–26# ~and, more
recently, Ref.@27#! to the flow of granular media; he als
tried to take into account the effect of the couple stress@28–
34#, writing a balance equation for the angular momentu
too. Different, more empirical approaches can be found
the works of Pouliquen and Gutfraind@35#, in which a proba-
bilistic model is coupled with the Coulomb relation, an
Santomaso and Canu@36#, who considered the granular me
dia as a pseudofluid that follows a non-Newtonian behav

On the other side there are works devoted to the ra
flow ~collisional and translational regimes!. This area has
been investigated essentially by means of computer sim
tions @37,38# or by a microstructural kinetic modeling. Th
basic ideas of this second approach~to which the present
paper belongs! were first presented in the pioneering work
Bagnold@1#, who constructed a simplified expression to r
late the gradient of the mean velocity with the stresses,
above all by Ogawa@39,40#, who emphasized the presenc
of the fluctuating components of the velocity of the partic
and introduced the concept of ‘‘granular temperature,’’ st
ing a clear analogy between the kinetic theory of gases~di-
lute and dense! and the behavior of granular media~transla-
tional and collisional regimes!. Following Ogawa, Haff@41#
wrote a paper in which he, with heuristic arguments, de
mined the transport coefficients and the collisional dissi
tion of mechanical energy and found the solutions of

i
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MATTEO STRUMENDO AND PAOLO CANU PHYSICAL REVIEW E66, 041304 ~2002!
balance equations for some common applications. Then
searchers went deeper inside the analogy with the kin
theory of gases@42–44# and introduced in the granular fiel
the use of the distribution functions. First, for a system co
prizing smooth, rigid, elastic spheres, a Maxwellian distrib
tion function was used@45#, then@2,46,47# balance equations
in a general form and expressions for collisional source
flux terms were given and applications were made to smo
nearly elastic spheres using non-Maxwellian distribut
functions. Attempts to generalize these ideas have been m
to include rough particles@48# and the case of a mixture o
particles@49#.

Simulations of the granular behavior taking into accou
all the regimes~frictional, collisional, translational! have
been performed by Savage@50,6#, Johnson, Nott, and Jack
son @7#, Anderson and Jackson@51# in the case of the in-
clined chute and by Johnson and Jackson@8# in the case of
plane shearing. Simulations of the chute flow limited to t
rapid regimes have been proposed by Richman and M
ciniec @52# and recently by Massoudi and Boyle@53#. The
problem of the vertical vibration of granular material h
been approached, among the others, by Warr, Huntley,
Jacques@54#.

The presence of the viscous contribution to the transfe
particles properties has been considered by Nott and Jac
@55# while the influence of the boundary conditions has be
investigated by Hueet al. @56#, Jenkins and Richman@57#,
and recently by Chou@58#.

Turning back to the case of smooth, spherical, ident
particles in rapid flow, it has been recently pointed out@59–
61# that, while for a gas the distribution function at equili
rium is Maxwellian and in some applications the Maxwelli
approximation is satisfactory, granular matter also in the s
plest cases deviates from the Maxwellian behavior. Accou
ing for deviations, through all second-order moments,
example, is required to give a proper description of
granular dynamics and to represent phenomena that are
ligible in the classical fluids but not in the granular field,
the differences between the normal pressures. Richman@59#
introduced an anisotropic Maxwell distribution function, d
pendent on all second-order moments of the fluctuant vel
ties, and used all the second-order moment balances to s
the dilute, steady, homogeneous shear flows. A system
approach has been developed by Goldhirsch and
@60,61#, based on a generalization of the Chapman-Ens
expansion. A direct analysis of the Boltzmann equation
an appropriate Chapman-Enskog expansion was previo
suggested by Goldshtein and Shapiro@62#, who studied a
weakly inhomogeneous system consisting of rough sph
and calculated the partition of fluctuating kinetic energy b
tween the rotational and translational components. Sela
Goldhirsch @61# proposed a method to generalize t
Chapman-Enskog expansion to smooth inelastic sph
based on a double expansion with respect to both the Kn
sen number and the degree of inelasticity. They obtai
constitutive relations for the heat flux and for the stress t
sor and calculated the normal pressure difference in the
of the shear flow, resulting in a good agreement with
numerical calculations. A shortcoming of all the metho
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based on the~generalized! Chapman-Enskog expansion
that they can predict only normal solutions and not the m
general ones@42#.

In the present work, we apply the method of moments
predict the behavior of fast flow of smooth, identical sphe
and particularly to account for the anisotropy of the seco
order moments. The principal features of this paper are
following. First, beyond the mass and momentum balanc
all the second-order moment balances are considered.
ond, the velocity distribution functionf (1) has been approxi-
mated by a truncated series expansion in Hermite polyno
als around the Maxwellian distribution function@63# in a
fashion similar to that of Jenkins and Richman@47#. The
integrals of the collisional source term are rigorously eva
ated, without introducing further restrictions correspondi
to the hypothesis of nearly elastic particles; also the diff
ence in the mean velocity of the two colliding particles
considered in the evaluation of the collisional source te
Finally, having used the method of moments@64#, the closure
equations have been specified: the (N11)th order moments
~N being the order of the moments of which we consider
balances! and their derivatives have been expressed in te
of the lower-order moments introducing some improveme
to the classical ‘‘elementary kinetic theory’’@65,42#. This
choice is different with respect to the solution adopted
Grad@63# and by Jenkins and Richman@47#, who considered
equal to zero the (N11)th-order moments and their deriva
tives, in the hypothesis that thef (1) is approximated by an
Hermite expansion truncated to theNth order. The model has
been applied to the translational flow on an inclined chu
obtaining the profiles of the solid volumetric fraction, th
mean velocity, and all the second-order moments. The mo
can be extended to all the rapid regimes once the collisio
flux terms are considered; expressions for these fluxes h
been given by Jenkins and Savage@2# and by Jenkins and
Richman@47#. Finally, the theoretical results have been co
pared with the experimental data of Azanza, Chevoir, a
Moucheront@66# and of Drake@67#. Other measurement
have been presented by Savage@50,68#, Ishida and Shirai
@69#, Ahn, Brennen, and Sabersky@70#, Hanes and Walton
@38#, Santomaso and Canu@36# but the papers of Azanza
Chevoir, and Moucheront@66# and of Drake@67# report the
most complete series of data, including the profiles
second-order moments and the values of the microstruct
properties and of the operative parameters~restitution coef-
ficient, chute angle, particles diameter, and density!.

II. STATEMENT OF THE PROBLEM AND DEFINITIONS

We will consider particles that are smooth spheres of u
form diameterD; the particles are noncohesive and elect
static effects are neglected. The particle interactions are o
binary instantaneous collisions.
The single particle velocity distribution functionf (1) is de-
fined so thatf (1)(c,r ,t)dcdr is the probable number of par
ticles with actual velocities inc1dc, in the volume element
r1dr , at the timet. The actual particle velocityc can be
assumed as the sum of the fluctuant velocityC and the mean
velocity u. the single particle velocity distribution functio
4-2
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METHOD OF MOMENTS FOR THE DILUTE GRANULAR . . . PHYSICAL REVIEW E 66, 041304 ~2002!
can be expressed both as a function of (c,r ,t) or as a func-
tion of the fluctuant velocity (C,r ,t) and

f ~1!~c,r ,t !dcdr5 f ~1!
„C1u~r ,t !,r ,t…dC dr

5 f c
~1!~C,r ,t !dC dr . ~1!

The zeroth-order moment is defined by* f c
(1)(C,r ,t)dC and

is equal to the number densityn(r ,t) ~number of particles
per unit of volume!; here and in the followingdC
5dCx dCy dCz and the integration is intended over all va
ues ofC. The first-order moments of the fluctuant velociti
are defined by*Ci f c

(1)(C,r ,t)dC and are always equal t
zero; the second-order moments of the fluctuant veloci
are given by*CiCj f c

(1)(C,r ,t)dC, where the generic indice
i and j refer to thei th and j th components of the fluctuan
velocity. Similarly, it is possible to define the fluctuant v
locity moments of higher order.

In the same manner, actual velocity moments of a gen
order can be defined; the first-order moments of the ac
velocities are*ci f

(1)(c,r ,t)dc and they are equal to thei th
component of the mean velocityui multiplied by n. The
mean value of a generic property which depends upon
actual velocityc(c) is given by ^c&[(n21)*c(c) f (1)(c,
r ,t)dc; or, in terms of fluctuations, ifc5c(C) ^c&
[(n21)*c(C) f c

(1)(C,r ,t)dC. Following Jenkins and Rich
man @47#, we introduce the notation Mi 1,i 2 . . . i N
[^Ci 1

Ci 2
...Ci N

& for the genericNth-order moment of the
fluctuating velocities divided byn; the granular temperatur
is defined byT5(Mxx1M yy1Mzz)/3 and represents a mea
sure of the kinetic energy of the particles associated with
fluctuating velocities, which is the only ‘‘internal’’ energy t
be considered for smooth particles.

The pair distribution functionf (2) is defined so that
f (2)(c1 ,r1 ,c2 ,r2 ,t)dc1 dr1 dc2 dr2 is the joint probability
that at the same timet a particle with actual velocity (c1
1dc1) is in (r11dr1) and a particle with actual velocity
(c21dc2) is in (r21dr2). For granular materials in transla
tional regime, the hypothesis of ‘‘molecular chaos’’ can
used, according to which the two particles move indep
dently,

f ~2!~c1 ,r1 ,c2 ,r2 ,t !5 f ~1!~c1 ,r1 ,t ! f ~1!~c2 ,r2 ,t !, ~2!

if we are considering moderately dense systems~collisional
regime!, in which a significant fraction of the volume is oc
cupied by the particles, Eq.~2! must be corrected into

f ~2!~c1 ,r1 ,c2 ,r11Dk,t !

5g0~r11 1
2 Dk,t ! f ~1!~c1 ,r1 ,t ! f ~1!~c2,r11Dk,t!,

~3!

in the case ofr25r11Dk, wherek is the unit vector di-
rected from the center of the particle inr1 to the particle in
r2 , as depicted in Fig. 1. The functiong0 is the radial distri-
bution function at contact and it has been introduced in
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~3! to reflect the increase of collisions in moderately den
systems, where a fraction of the volume is occupied by
particles@42,71,70#.

III. THE APPROXIMATION FOR fC
„1…

To develop an explicit expression forf C
(1) we follow a

method similar to that suggested by Grad@63# in the theory
of dilute gases, i.e., we use a series expansion based o
Maxwell distribution function,

f C
~1!~C,r ,t !5 f C,0

~1! ~C,r ,t ! (
n50

`

ai n
~n!~r ,t !Hi n

~n!~w!, ~4!

where f C,0
(1)(C,r ,t)5n/(2pT)3/2exp(2uCu2/2T) is the Max-

well distribution function,w5C/AT is the nondimensiona
form of C andi n is a permutation ofn indices chosen among
x,y,z. The summation is intended overn and, for each value
of n, over all the permutations ofn indices ~chosen among
x,y,z!. ai n

(n) are the expansion coefficients and the functio

Hi n
(n) are Hermite orthogonal polynomials@63#.

The polynomialsHi n
(n) are symmetrical with respect to ev

ery combination of their indices, that is,Hi n
(n)5H j n

(n) if j n is a

permutation ofi n and the related coefficientsai n
(n) and aj n

(n)

are equal too; so, the same quantity can be written m
times in the expansion. Instead, we prefer to introduc
single coefficientbj n

(n) , equal to the summation (ai n
(n)1aj n

(n)

1¯) of the ai n
(n) over the different permutationsi n for a

fixed choice of the indices; all theseai n
(n) to be summed are

identical Accordingly, the expansion~4! becomes

f C
~1!5 f C,0

~1! (
n50

`

bi n
~n!Hi n

~n! , ~5!

FIG. 1. Definitions ofr1 , r2 , and r , position of the particle’s
centers and of the contact point, respectively.r15r1 j1(D/2). k is
the unit vector directed from the center of the first particle to
center of the second.
4-3
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where the summation is intended overn and, for each value
of n, over the choices of the indicesx,y,z~but not over their
permutations!.

The expressions of thebi n
(n) can be obtained requiring th

condition of orthogonality ofHi n
(n) using f C,0

(1) as weight func-

tion. Up to the third order they result in

b051, ~6!

bi
~1!50, ~7!

~b! i j
~2!bi j

~2!5
Mi j

T
2d i j , ~8!

~b! i jk
~3!bi jk

~3!5
Mi jk

T3/2 , ~9!

with (b) i j
(2)52 if i 5 j (b) i j

(2)51 if iÞ j , (b) i jk
(3)56 if i 5 j

5k (b) i jk
(3)52 if two of the three indices are equal (b) i jk

(3)

51 if all the three indices are different. It can be easily se
that the sumbxx1byy1bzz50.

IV. BALANCE EQUATIONS

Balance equations can be written following Chapman a
Cowling @42#. They derived the balance for a generic pro
erty c function of t, r , c from the Boltzmann equation,

]

]tU
r ,c

n^c&5n
Fi

m K dc

]ci
U

t,r
L 2

]n^ci ,c&
]r i

U
t,c

1nS K ]c

]t U
r ,c
L 1K ci

]c

]r i
U

t,c
L D 1C~c!,

~10!

where Fi are the external forces andm is the mass of a
particle. The summation over the same indices conven
has been adopted and so will be in the following.C(c) is the
rate of change of the propertyc per unit volume due to
collisions.

In the present work we will use propertiesc5c(C) de-
pending only on the fluctuating velocities, which do not d
pend ont and onr ; in this hypothesis and ifc is expressed as
a function ofC ~fluctuating velocities! instead ofc, the bal-
ance~10! can be rewritten as@47#

Dr^c&
Dt

1r^c&
]ui

]r i
U

t,C

1
]

]r i
U

t,C

@r^Cic&1Q i~mc!#

1rS Dui

Dt
2

Fi

mD K ]c

]Ci
U

t,r
L 1S rK Ci

]c

]Cj
U

t,r
L

1Q i S ]mc

]Cj
D U

t,r
D ]uj

]r i
U

t,C

5x~mc!, ~11!

in which
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]
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t,C

,

r5nm is the mass bulk density,ui is the mean velocity,
Q i(c) is the collisional flux of the propertyc in the direction
i, andx~c! is the collisional source of the propertyc in the
unit of time and of volume.

From the general population balance~11!, it is possible to
derive specific balances depending on the type of func
c(C). In the following, the balance of mass@Eq. ~12!#, the
three momentum balances@Eq. ~13!# the balance of energy
@Eq. ~14!#, and of the deviatoric part of the second-ord
moments of the fluctuant velocity@Eq. ~15!# are reported in
the form of Jenkins and Richman@47#,

Dr

Dt
1r

]ui

]r i
50, ~12!

r
Dui

Dt
1

]Pi j

]r j
5nFi , ~13!

3

2
r

DT

Dt
1

]Qi

]r i
1Pi j

]uj

]r l
5

1

2 (
j 5x,y,z

x i j , ~14!

1
2 r Ṁ̂ i j 1~Qki j2

1
3 Qkd i j ! ,k1 1

2 @Pkiuj ,k1Pk jui ,k#

2 1
3 Pknun,kd i j 5

1
2 x̂ i j , ~15!

in which

x i 1i 2¯ i N
[x~mCi 1

Ci 2
¯Ci N

!,

Q j i 1i 2¯ i N
[Q j~mCi 1

Ci 2
¯Ci N

!,

Pi j 5rMi j 1Q i j ,

equal to the sum of the diffusive translational momentu
flux @42# and the collisional flux of the propertymCj ; Qi
51/2( j 5x,y,z(rMi j j 1Q i j j ) and ( j 5x,y,z(rMi j j 1Q i j j ) is
equal to the sum of the diffusive translational flux of ener
and the collisional flux of energy along thei th direction;
Qki j5(rMki j1Qki j )/2,

M̂ i j 5Mi j 2 (
k5x,y,z

~Mkk/3!d i j ,

x̂ i j 5x i j 2 (
k5x,y,z

~xkk/3!d i j ,

Ṁ̂ i j 5
DM̂ i j

Dt
.

Similarly, higher-order moment balances can be deriv
Note that the first-order moment balance, Eq.~13!, contains
Mi j , i.e., second-order moments; similarly the second-or
moment balances, Eqs.~14! and ~15!, contain third-order
moments, and so on. Solutions of these equations req
some sort of closure, discussed in Sec. VII.
4-4
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V. THE COLLISIONAL SOURCE OF A PROPERTY

To solve the balance equations@see Eq.~11! for a general
expression#, we need an expression for the collisional cont
butionsx(c) andQ i(c). In the following we will develop
an expression forx~c! while we will not discuss the colli-
sional fluxesQ i , already determined by Jenkins and Sava
@2# and Jenkins and Richman@47#.

If we consider two particles labeled 1 and 2, we definec1
as the propertyc of particle 1 andc2 as the same propert
for particle 2. The meaning ofx(c) is the variation of the
sum (c11c2) due to the collisions between two particle
that occur inside the element of volumedr around the refer-
ence pointr and during the timet→t1dt, per unit of vol-
umedr and of timedt. The collisions are considered insta
taneous. When a collision takes place, the variation in
sum (c11c2) will be associated with the volume eleme
dr where the contact point lies~Fig. 1!. To calculatex~c! we
have to know the probability that a collision might take pla
between two particles in (r ,dr ) during ~t,dt! and we call it
Pcoll .

The function f c
(1) is defined so thatf c

(1)(c,r ,t)dcdr rep-
resents the probable number of particles with actual vel
ties in c1dc, whose center is inside the volume elemenr
1dr , at the timet. It can be demonstrated thatf c

(1)> f (1).
The probabilityPcoll that a collision might take place be

tween two particles in (r ,dr ) during ~t,dt! is given by the
joint probability of two events to happen simultaneously. T
first event is that the particle 1, candidate for collision
(t,dt), at the timet is in r1 , dr1 with r15r1(D/2)j1 , where
j1 is a generic unit vector applied inr ~Fig. 1!. The second
event is that at the timet there are other particles~particles
2!, with actual velocities aroundc21dc2 , likely to collide
against particle 1 in the followingdt and the contact poin
between the particles at impact would be inr , dr . The joint
probability of both events can be determined once e
single event’s probability is given.

Let us consider inr a rectangular reference framex,y,z
and a spherical reference framef, u, R whereR is the radial
coordinate,u is the angle betweenRj1 and y, and w is the
angle between the projection ofRj1 on thex-z plane andx.
Points r1 can be approximately described by the spheri
shell between two spheres centred inr , the first with radius
(D2dR)/2, the second with radius (D1dR)/2.

The probable number of particles with actual velocit
around c11dc1 whose center is in the volume eleme
(D/2)2dR dj1 aroundr1 ~Fig. 2!, at the timet ~first event!, is

f c
~1!~c1 ,r1 ,t !dc1S D

2 D 2

dR dj1

> f ~1!~c1 ,r1 ,t !dc1S D

2 D 2

dR dj1 . ~16!

To determine the probability of the second event let us c
sider a particle 1 centered in the pointr15r1(D/2)• j1 . If
we connect the center of particle 2 with the center of part
1 by a straight line defined by a unit vectork ~Fig. 1!, only
those particles 2 situated at the time of impact in points al
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the lines withk inside the interval shown in Fig. 3 have to b
considered, otherwise the lines will not pass across the
umer , dr and the collision that we want to monitor will no
occur inr , dr . So, the second event is that there are partic
2, with actual velocities aroundc21dc2 , the center of which
can be connected at the impact to the center of particle 1
a unit vectork, with k inside the interval shown in Fig. 3.

Let us consider a volume element around a pointr2 ~Fig.
4, where a geometrical sphere of radiusRI , not a particle, is
shown! whose base is the surface elementRI 2dj and genera-
trix dI . The probable number of particles with actual velo
ties aroundc21dc2 whose center is in a volume elementr2
1dr2 , at the timet, is

f ~1!~c2 ,r2 ,t !dc2RI 2dj ~dl• j !.

FIG. 2. Definition of the volume element aroundr1 in a spheri-
cal reference frame.R is the radial coordinate;dj1 is the differential
of the solid angle and defines the surface element (D/2)2dj1 on the
sphere of radiusD/2 centered inr .

FIG. 3. Range ofk such that the impact between the particles
inside (r ,dr ).
4-5
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The direction ofdl is such that (dl• j ).0.
The particles 2, fulfilling the requirements above, att impact

lay on the element surfacedS of the geometrical spher
shown in Fig. 5, which approximately measures 4dA, where
dA is the magnitude of any of the six faces that are
boundaries of the volume elementdr (dA5dz dy in Fig. 5!.
These particles in the timet beforet impact are inside the vol-
ume whose base measures 4dA and whose generatrix i
(c12c2)dt @42#. Therefore the probability of the secon
event is given by

f ~1!~c1 ,r2 ,t !dc2$@~c12c2!dt#•k%4dA,

r25r 1
D

2
k1

1

2
~c12c2!dt>r1

D

2
k.

Being k52 j1 , thendk5dj1 and Eq.~16! can be rewritten
as

f ~1!~c1 ,r1 ,t !dc1S D

2 D 2

dR dj15 f ~1!~c1 ,r1 ,t !dc1S D

2 D 2

dR dk.

~168!

FIG. 4. Definition of the volume element around the pointr2 by
means of the generatrixdl and the base~surface element! RI 2 dj ; j is
a unit vector andRI is the radius of a geometrical sphere, not o
particle. The same image is shown in three-dimensional~a! and
two-dimensional~b! views.
04130
e

The probabilityPcoll in the unit of time and volume, in the
hypothesis of independence of the two events, is given,
cordingly to Eq.~3!, by the product of the two probabilitie
corrected by the radial distribution functiong0 ,

Pcoll5g0~r ,t ! f ~1!~c1 ,r1 ,t !dc1f ~1!~c2 ,r2 ,t !dc2$g•k%D2dk,

~17!

with g5c12c2 .
The cases described byPcoll in which a collision during

t,dt could happen must satisfy the condition (g•k).0, which
means that only approaching particles are considered,
not departing ones, since these will not collide. OncePcoll
has been specified, it is easy to calculate an expression
the collisional source of a propertyx(c), that is,

x~c!5
1

2E E E
g•k.0

@~c181c28!2~c11c2!#Pcoll , ~18!

wherec8 is the property after the collision, where the coe
ficient 1/2 has been introduced to avoid counting the sa
collision twice. Therefore,

x~c!5
1

2E E E
g•k.0

@~c181c28!2~c11c2!#g0~r ,t !

3 f ~1!~c1 ,r1 ,t !dc1 f ~1!~c2 ,r2 ,t !dc2$g•k%D2dk,

~19!

where the integrations are for all values ofc1 , c2 , andk such
that (g•k) is positive. The result in Eq.~19! is similar to the
expressions that could be obtained by the classical metho
Chapman and Cowling@42#. The difference is due to the fac
that we calculatedPcoll makingr ~the point of evaluation of
the Pcoll) identify with the point in which the collision hap
pens, keeping it fixed while particles 1 and 2 move around
in this way the functiong0 can be evaluated atr and the

FIG. 5. Relative position of particles that are going to colli
during t→t1dt: the first is located inr1 while the second is in a
point r2 before impact, such that the vectork linking the particle’s
centers at the impact passes throughr , dr . The view is bidimen-
sional ~see Fig. 4!.
4-6
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positions of the particles 1 and 2, namely,r1 and r2 , are
symmetrical with respect tor . We will take advantage o
these features in the following evaluation ofx(c) ~Sec. VI!.
Otherwise, applying properly the expressions of Chapm
and Cowling@42#, the fixed point isr1 , while the point in
which the collision happens andr2 move aroundr1 ; there-
fore f (1)(c1 ,r15r ,t) and f (1)(c2 ,r25r11Dk,t) are evalu-
ated in the shifted points andg0 should be evaluated at th
point of collision r11(D/2)k.

VI. THE EVALUATION OF x„c…

A Taylor expansion aroundr truncated to the first-orde
term is used to expressf (1)(c1 ,r1 ,t) f (1)(c2 ,r2 ,t) in terms of
f (1)(c1 ,r ,t), f (1)(c2 ,r ,t) and their spatial derivatives@47#,

f ~1!~c1 ,r1 ,t !> f ~1!~c1 ,r ,t !2
D

2
ki

] f ~1!~c1 ,r ,t !

]r i
U

c1 ,t

~20!

being r15r1(D/2)j15r2(D/2)k.
In the same way~consideringr25r1kD/2)

f ~1!~c2 ,r2 ,t !> f ~1!~c2 ,r ,t !1
D

2
ki

] f ~1!~c2 ,r ,t !

]r i
U

c2 ,t

.

~21!

Therefore,

f ~1!~c1 ,r1 ,t ! f ~1!~c2 ,r2 ,t !

> f ~1!~c1 ,r ,t ! f ~1!~c2 ,r ,t !

1
D

2
ki

] f ~1!~c2 ,r ,t !

]r i
U

c2 ,t

f ~1!~c1 ,r ,t !

2
D

2
ki

] f ~1!~c1 ,r ,t !

]r i
U

c2 ,t

f ~1!~c2 ,r ,t !, ~22!

if the second-order terms can be neglected.
Introducing the result of Eq.~22! in Eq. ~19! and if a good

approximation forf (1) is given by Eq.~5! truncated to the
second-order terms~expressed in terms of actual velocities!,
the collisional source of a propertyx~c! can be obtained as
sum of four terms,

x~c!5E~c!1F~c!1bi j Fi j ~c!1G~c!, ~23!

where

E~c!52g0~r ,t !E E E D~c! f 01f 02S D

2 D 2

~g•k!dk dc1 dc2 ,

~24!

F~c!5g0~r ,t !E E E H f 1

] f 2

]r m
U

c2 ,t

2 f 2

] f 1

]r m
U

c1 ,t
J D~c!km

32S D

2 D 3

~g•k!dk dc1 dc2 , ~248!
04130
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Fi j ~c!52g0~r ,t !E E E f 01f 02D~c!S D

2 D 2

~g•k!

3H @c2i2ui~r ,t !#@c2 j2uj~r ,t !#

T

1
@c1i2ui~r ,t !#@c1 j2uj~r ,t !#

T
22d i j J

3dk dc1 dc2 , ~2488!

G~c!52g0~r ,t !babbstE E E D~c! f 01f 02S D

2 D 2

~g•k!

3H @c2a2ua~r ,t !#@c2b2ub~r ,t !#

T
2dabJ

3H @c1s2us~r ,t !#@c1t2ut~r ,t !#

T
2dstJ

3dk dc1 dc2 , ~24888!

where we used the following abbreviations:

f 025 f 0
~1!~c2 ,r ,t !,

f 015 f 0
~1!~c1 ,r ,t !,

f 25 f ~1!~c2 ,r ,t !,

f 15 f ~1!~c1 ,r ,t !,

Dc5~c181c28!2~c11c2!.

Note that all the involved integrals have to be calculated
g•k.0.

The integral termF can be written as the sum of othe
nine terms, since

H f 1

] f 2

]r m
U

c2 ,t

2 f 2

] f 1

]r m
U

c1 ,t
J kmS D

2 D
5a1b1c1d1e1 f 1g1h1 i ,

where

a5S D

2 D km

1

T
f 01

~1! f 02
~1!

]bst

]r m
@~c2u!2s~c2u!2t

2~c2u!1s~c2u!1t#,

b5S D

2 D 1

T
f 01

~1! f 02
~1!

]bst

]r m
km

bi j

T

3 b2~c2u!1s~c2u!1t~c2u!2i~c2u!2 j

1~c2u!1i~c2u!1 j~c2u!2s~c2u!2tc

c5 f 01
~1! f 02

~1!S 2
1

TD F ]u

]r m
•g2

1

T

]T

]r m
u•g

1
1

T

]T

]r m
G0•gGkmS D

2 D ,
4-7
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d5 f 01
~1! f 02

~1!
bst

T
@~c2u!2s~c2u!2t1~c2u!1s~c2u! i t #

3kmS D

2 D S 2
1

TD F ]u

]r m
•g2

1

T

]T

]r m
u•g1

1

T

]T

]r m
G0•gG ,

e5 f 01
~1!

bst

T
@~c2u!2s~c2u!2t# f 02

~1!
bab

T
@~c2u!1a~c2u!1b#

3kmS D

2 D S 2
1

TD F ]u

]r m
•g2

1

T

]T

]r m
u•g1

1

T

]T

]r m
G0•gG

f 5 f 01
~1! f 02

~1!S bi j

T D H bstHst~c1!Fuiuj S 2
] ln T

]r m
D1

]uiuj

]r m

2c2i S ]uj

]r m
2uj

] ln T

]r m
D2c2 j S ]ui

]r m
2ui

] ln T

]r m
D2bstHst~c2!

3Fuiuj S 2
] ln T

]r m
D1

]uiuj

]r m
2c1i S ]uj

]r m
2uj

] ln T

]r m
D

2c1 j S ]ui

]r m
2ui

] ln T

]r m
D J kmS D

2 D ,

g5 f 01
~1! f 02

~1!S bi j

T D H S ]uj

]r m
2uj

] ln T

]r m
Dgi

1gj S ]ui

]r m
2ui

] ln T

]r m
D J kmS D

2 D ,

h52 f 01
~1! f 02

~1!S bi j

T D ] ln T

]r m
$c2ic2 j2c1ic1 j%kmS D

2 D ,

i 52 f 01
~1! f 02

~1!S bi j

T D ] ln T

]r m
$bstHsi~c1!c2ic2 j

2bstHst~c2!c1ic1 j%kmS D

2 D ,

and G05(c11c2)/2. Collecting all these pieces we finall
obtainF as the sum of nine integral terms,

F~c!5Fa~c!1Fb~c!1Fc~c!1Fd~c!

1Fe~c!1F f~c!1Fg~c!1Fh~c!1Fi~c!.

VII. THE CLOSURE EQUATIONS

A generic flow of granular material can be simulated u
ing the balances of mass~12!, of momentum~13!, and of the
second-order moments~14!, ~15!. In these equations, th
third-order moments~and their derivatives! also appear and
more generally, balance equations up to theNth order always
involve the (N11)th-order moments~and their derivatives!.
These quantities have to be expressed as functions o
other variables~density, three components of the mean v
locity, moments until theNth order! in order to solve the
system of equations. Frequently@63,47#, the (N11)th-order
coefficients of the expansion~5! and their derivatives have
04130
-

he
-

been simply neglected because thef (1) has been approxi-
mated by the expansion~5! truncated to theNth-order terms.
However, we question the conclusion that, even in the c
of negligible (N11)th-order coefficients, their derivative
vanish as well. It is generally not true that a satisfacto
approximation forf (1) turns out in a satisfactory approxima
tion for the derivative off (1). Therefore in the present sec
tion we develop new closure equations for t
(N11)th-order moments~and their derivatives! as functions
of the lower-order terms. The solution followed by Grad@63#
and by Jenkins and Richman@47# should be preferable if we
are sure that the approximatedf (1) fits sufficiently well the
real distribution, so that the same truncation is adequate
the f (1) derivatives as well. Generally, however, this a
proach requires raising the orderN at which the distribution
function is truncated in Eq.~5!, increasing the number o
balance equations and variables involved and then the d
culties for calculating the collisional source term.

Let us recall thatMi 1i 2¯ i N11
[^Ci 1

Ci 2
¯Ci N11

& is equal

to the generic (N11)th-order moment of the fluctuating ve
locities divided byn; besides the generic (N11)th-order
moment of the fluctuating velocities

E CjCi 1
¯Ci N

f C
~1!~C,r ,t !dC

is equal to the diffusive flux along thej direction of the
propertyCi 1

¯Ci N
@42# and can be easily calculated once

E Cjci 1
¯ci N

f C
~1!~C,r ,t !dC ~25!

is known. As an example, the lower terms (N51,N52) re-
sult in

E CjCi 1
f C

~1!~C,r ,t !dC5E Cjci 1
f C

~1!~C,r ,t !dC, ~26!

E CjCi 1
Ci 2

f C
~1!~C,r ,t !dC

5E Cjci 1
ci 2

f C
~1!~C,r ,t !dC

2ui 1E Cjci 2
f C

~1!~C,r ,t !dC

2ui 2E Cjci 1
f C

~1!~C,r ,t !dC. ~268!

Again, the integral~25! is equal to the diffusive flux along
the j direction of the propertyci 1

¯ci N
@42#. In the following

we will construct an approximate expression for such dif
sive fluxes, based on some concepts of the ‘‘elementary
netic theory,’’
4-8
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~diffusive flux of the propertyci 1
¯ci N

on the genericj direction!

5~positive diffusive flux of particles on thej direction!

3~difference of the mean value of the propertyci 1
¯ci N

!. ~27!
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The positive diffusive flux of particles on thej direction has
been calculated using the expansion of Eq.~5! truncated to
the second-order terms,

E
Cj>0

Cj f C
~1!~C,r ,t !dC5nA T

2p
~11bj j !. ~28!

We callDP the difference of the mean value of the prope
ci 1

¯ci N
. To determine it, we consider an area elementdA

and we set inrO a reference framei, j , k ~Fig. 6!; rO is the point
where we want to calculate the fluxes. We focus on the p
ticles that in the time intervalt→t1dt go through the area
elementdA. These particles are those which at the timet are
inside the volumedA dtc, c being their velocity. The mea
sure of the volume elementdA dtc is dA dtucucosc, c being
the angle betweenj andc. DP is equal to the mean value o
the propertyci 1

¯ci N
conveyed throughdA in the time inter-

val dt by particles moving in the ‘‘positive direction,’’ i.e.
according to the unit vectorj , minus the same quantity fo
those moving in the ‘‘negative direction.’’DP will be esti-
mated byPj 12Pj 2, wherePj 1 ~and, respectively,Pj 2) is
the mean value of the propertyci 1

¯ci N
, over the valuescj

.0, evaluated on thei-k plane~Fig. 6! where particles had
on the average, the last collision before passing throughrO.

The distance on the genericq direction between the mea
position of the last collision of the particles that move in t
‘‘positive direction’’ with respect torO is l j

j 1 while l j
j 2 is the

distance alongq in the ‘‘negative direction,’’ therefore,Pj 1

has to be evaluated atl j
j 1 ~and, respectively,Pj 2 at l j

j 2).
Then, neglecting external forces, the differenceDP can be
expressed as

FIG. 6. Area element aroundrO and volume elementdA dtc in
which the particle that is flowing throughdA with velocity c during
dt is contained.
04130
r-

DP5Pj 1~ l j
j 1!2Pj 2~ l j

j 2!. ~29!

Given the results~28! and ~29!, we can write the diffusive
flux of the propertyci 1

¯ci N
on thej direction, according to

Eq. ~27!, as

nA T

2p
~11bj j !@Pj 1~ l j

j 1!2Pj 2~ l j
j 2!# ~278!

or

nA T

2p
~11bj j !@P~ l j

j 1!2P~ l j
j 2!#

>nA T

2p
~11bj j !F ]P

]r j
U

r5rO

~ l j
j 12 l j

j 2!G
5FnA T

2p
~11bj j !

]^ci 1
¯ci N

&

]r j
U

r5rO

~ l j
j 12 l j

j 2!G ,

~2788!

if the averagePj 1 over the valuescj.0 ~and, respectively
Pj 2) can be substituted by the meanP over all possible
values ofc.

An expression forl j
j 1 ~and l j

j 2) as a function of density,
three components of the mean velocity, and moments u
the Nth-order needs to be developed. Generally,l q

j 1 can be
calculated as the mean value of (2cqtc), wherecq is the
velocity at the pointrO of particles crossingdA in dt andtc is
the interval between the time of the last collision and t
time in which the particle arrives at the pointrO. This calcu-
lation can be approximated as the product of^tc

j 1& ~the mean
value of tc over the particles that travel in the ‘‘positiv
direction’’! by ^cq

j 1&* ~the mean value ofcq over all value of
cj.0). The first one,̂ tc

j 1&, is overestimated byt j 1, the
collision interval ~the mean time between two successi
collisions! for particles in the ‘‘positive direction,’’ sol q

j 1 is
calculated as

l q
j 152Kq

j 1t j 1^cq
j 1&* , 0<Kq

j 1<1. ~30!

This expression has been obtained neglecting the influe
of the external forces on the particle moving towards
surface elementdA, namely, considering that the partic
travels todA with the velocitycq , that the particle has at th
point rO. Instead, in the case of a constant external force
ing along theq direction, Fq , the velocity of the particle
after the last collision~before crossingdA! is given by
4-9
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cq2
Fq

m
tc ,

therefore, the mean value of the velocity of the particle fro
the last collision to the surface elementdA is

cq2
1

2

Fq

m
tc ,

becauseFq is constant. In this hypothesis, Eq.~30! is re-
placed by

l q
j 152Kq

j 1t j 1H ^cq
j 1&* 2Kq

j 1 1

2

Fq

m
t j 1J , 0<Kq

j 1<1.

~308!

The collision intervalt in a specific (rO,tI) has been evaluate
by a method similar to that provided by Chapman and Co
ing @42#, but using the expansion~5! truncated to the second
order terms to express thef C

(1) instead of the Maxwellian
distribution function,

t5
1

D2n4~pT!0.5F12
1

60
bxy

2 G , ~31!

the dependency uponrO and tI is given through the quantitie
n ~proportional to the density!, T, bxy .
Then, we can provide a first approximation ofl q

j 1 of Eq.
(308) with t j 15t(rO,tI),
g

te

o

04130
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l q
j 152Kq

j 1t~rO,tI!H ^cq
j 1&* 2Kq

j 1 1

2

Fq

m
t~rO,tI!J ,

0<Kq
j 1<1. ~3088!

A better approximation can be obtained expressingt j 1 as the
arithmetical mean of the values oft at (rO,tI) and at the last
collision, defined by (l j 1,t j 1),

t j 15
1

2
@t~rO,tI!1t~rO1 l j 1,tI2t j 1!#

>t~rO,tI!1
1

2

]t

]r p
U

r5rO

l p
j 12

1

2

]t

]t U
t5tI

t j 1,

t j 1>F t~rO,tI!1
1

2

]t

]r p
U

r5rO

l p
j 1G 1

S 11
1

2

]t

]t U
t5tI

D .

However, this introduces an additional dependency oft j 1

upon l j 1, which is the quantity sought for. Consequently,
this second approximation, the termsl q

j 1 result from the so-
lution of the following algebraic equations:
l q
j 152Kq

j 1F t~rO,tI!1
1

2

]t

]r p
U

r5rO

l p
j 1G 1

S 11
1

2

]t

]t U
t5tI

D H ^cq
j 1&* 2Kq

j 1 1

2

Fq

m F t~rO,tI!1
1

2

]t

]r p
U

r5rO

l p
j 1G 1

S 11
1

2

]t

]t U
t5tI

D J ,

0<Kq
j 1<1. ~30888!
ero
hese

ge
In the previous equations~30!–~30888!, we presented differ-
ent approximations forl q

j 1 ; in the following calculations
~Sec. VIII!, we will use the expression of Eq.~30! with
t j 15t(rO,tI) because it is the easier to implement, thou
possibly less precise. The mean value^cq

j 1&* of cq over all
valuescj.0, for particles crossingdA in dt, is given by

^cq
j 1&* 5

*cj>0cqf ~1!~c,r ,t !dc~dA dtucu cosc!

*cj>0f ~1!~c,r ,t !dc~dA dtucucosc!

5
*cj>0cqf ~1!~c,r ,t !cj dc

*cj>0~c,r ,t !cj dc
.

In the classical perspective this value can be calcula
with further approximation, as the average ofucu over all
possible values ofc, multiplied by the average of the rati
h

d,

betweencq and ucu (5cosc if j 5q) over the values ofc
such thatcj.0. Besides, to calculate the mean value ofucu
the Maxwell distribution function has been used and nonz
components of the mean velocity have been neglected. T
reasonements bring to the classical expressions forl q

j 1 @65#,
calculated by Eq.~30!, in the casej 5q,

l j
j 152l

2

3
,

wherel is the mean free path,t j 15t(rO,tI) and K j
j 1 is as-

sumed equal tol.
Differently, we calculated more rigorously the avera

^cq
j 1&* , taking advantage of the expansion forf C

(1) of Eq. ~5!
truncated to the second-order terms~with C5c2u) to ex-
4-10
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press thef (1). Specifically, we obtained explicit solution
~besides the error function! for both the numerator and th
denominator, as follows.

~1! For j 5q.

^cq
j 1&* 5

*cj>0cj
2f ~1!~c,r ,t !dc

*cj>0f ~1!~c,r ,t !cjdc
~32!

with

E
cj>0

cj
2f ~1!~c,r ,t !dc

5
n

~2pT!3/2 (
n50

4

anE
2uj /&T

1`

Yne2Y2
dY,

a052pTuj
2A2T2

1

T
bj j uj

2 p

2
~T2!2.5,

a158pT2uj2
1

T
bj j ujp~T2!3,

a252pT~T2!3/22
1

T
bj j

p

2
~T2!3.51

1

T
bj j uj

2p~T2!2.5,

a35
1

T
bj j 2ujp~T2!3,

a45
1

T
bj j p~T2!3.5,

and

E
cj>0

f ~1!~c,r ,t !cjdc5
n

~2pT!3/2 (
n50

4

gnE
2uj /A2T

`

Yne2Y2
dY,

g052pTujA2T2
1

T
bj j uj

p

2
~T2!2.5,

g154pT22
1

T
bj j

p

2
~T2!3,

g25
1

T
bj j ujp~T2!2.5,

g35
1

T
bj j p~T2!3.

~2! For j Þq.

^cq
j 1&* 5

*cj>0cqf ~1!~c,r ,t !cj dc

*cj>0f ~1!~c,r ,t !cj dc
, ~33!

with
04130
E
cj>0

cqf ~1!~c,r ,t !cjdc

5
n

~2pT!3/2 (
n50

3

dnE
2uj /A2T

`

Yne2Y2
dY,

d052pTujuqA2T2
1

T
bj j ujuq

p

2
~T2!2.5,

d154pT2uq2
1

T
bj j uq

p

2
~T2!31

1

T
bq juj

p

2
~T2!3,

d25
1

T
bq j

p

2
~T2!3.51

1

T
bj j uqujp~T2!2.5,

d35
1

T
bj j uqp~T2!3,

and, for the denominator, the same expression obtained
j 5q holds. Note that all the integrals involve
*2uj /A2T

1` Yne2Y2
dY can be evaluated analytically, ifuj50, or

through the standard error function. Some details are
ported in the Appendix.

Summarizing, knowledge of̂cq
j 1&* and t j 1 allows to

determinel q
j 1 ~and, similarly, l q

j 2) with Eqs. ~30!–~30888!
and then, through Eqs.~27!, we can evaluate the diffusive
fluxes or the (N11)th-order moments as functions of th
density, three components of the mean velocity, and m
ments until theNth order.

VIII. THE TRANSLATIONAL REGIME IN A CHUTE
FLOW

Jenkins and Richman@47# used the Grad’s method as
basic scheme to study granular dynamics. They tried to
tain a general solution, valid for any kind of motion, for th
constitutive equations of the coefficients of the series exp
sion ~5!, but they said that the procedure was valid in t
limit e→1 ~e is the restitution coefficient!.

Here, we follow a different approach searching a solut
for a specific configuration, but without restrictions one. The
procedure used can be applied in a similar way to any o
kind of flow, but is expected to result in different solution
instead of a single, general one.

We concentrate on the fully developed, gravity drive
stationary granular flow in an inclined chute. The coordin
system is sketched in Fig. 7. It is supposed that the influe
of the confining walls is negligible, so that there are no var
tions of the quantities alongz ~z-independent flux!. We ad-
dress to the translational regime, i.e., we will neglect
collisional terms of flux of a propertyQ i with respect to the
translational ones. In order to extend the model to simu
also the collisional regime, neglected fluxes must be con
ered. On the contrary, the collisional source termx cannot be
anticipated to be negligible with respect to the derivative
the translational flux terms or to the product of the trans
tional flux terms by the mean velocity gradient@Eq. ~11!#.
4-11
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Accordingly, we keep consideringx also with the dilute flow.
For the granular type of flow considered here, the bala

of mass~12! and momentum along thez coordinate are iden
tically satisfied, while the momentum balances~13! along the
x andy coordinates reduce to

rgx5
]rTbxy

]y
, ~34!

rgy5
]rT~112byy!

]y
. ~35!

The balance of the hydrostatic part of the second-order
ments@Eq. ~14!# becomes

1

2 (
j 5x,y,z

x j j 5
]ux

]y
rTbxy1

1

2 (
j 5x,y,z

]

]y
~rM y j j !, ~36!

three equations among the Eqs.~15! reduce to

rT
]ux

]y
~112byy!5xxy2

]

]y
~rM yxy!, ~37!

2
2

3
rT

]ux

]y
bxy1

]S rM yyy2
1

3
( j 5x,y,zrM y j j D
]y

5xyy2
1

3 (
j 5x,y,z

x j j , ~38!

2
2

3
rT

]ux

]y
bxy1

]S rMzzy2
1

3
( j 5x,y,zrM y j j D
]y

5xzz2
1

3 (
j 5x,y,z

x j j . ~39!

Equations~37!, ~38!, ~39! are, respectively, the balances
(CxCy), (CyCy2C2/3), (CzCz2C2/3). Balance of (CxCx
2C2/3) is dependent on the balances~38!, ~39!.

To obtain the previous results, it has been considered
in the case of a fully developed, stationary,z-independent
chute flow,byz andbxz are equal to zero, because the diff
sive translational momentum fluxes along thez coordinate
r M yz andrMxz , related tobyz andbxz by Eq. ~8!, are also
null; moreover,uy anduz are zero. Once the terms of coll
sional sourcex i j , the M yi j and theM yxy , are expressed a
functions of variablesr, ux , T, bxy , two independents coef
ficients among thebii , and their derivatives, Eqs.~34!–~39!

FIG. 7. Sketch of the chute geometry with reference frame.
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e
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at

become a system of ordinary differential equations~ODEs!
with respect to the independent variabley, to be solved in the
six dependent variablesr, ux , T, bxy , and two independents
coefficients among thebii . To solve the ODEs system, som
pieces of information must be additionally given, name
x i j , M y j j , M yxy , and appropriate boundary conditions.

A. The evaluation of x i j

The collisional source termx i j has to be expressed as
function of r, ux , T, bxy , and two independents coefficien
among thebii . To explicitly determine these dependencie
we used Eqs.~23! and~24!–~24888!, which have been derived
introducing Eqs.~22! and ~5! truncated to the second-orde
terms in Eq.~19!. A detailed investigation should be useful
understand how much this approximation fits the real va
of the productf (1)(c1 ,r1 ,t) f (1)(c1 ,r2 ,t).

Here, we just observe that Drake@67# and Azanza, Chev-
oir, and Moucheront@66# showed experimentally that for th
kind of flow considered here,f (1) is an anisotropic quasi
Maxwellian. Accordingly, thef (1) expansion of Eq.~5! trun-
cated to the second-order terms is a good approximatio
calculatex i j . Despite the fact that the experiments of bo
were performed in a bidimensional~only one layer of par-
ticles in thez direction! channel, the qualitative features o
the flow is expected to be the same for three-dimensio
channels.

An even more precise expression would be given by
~5! truncated to the third-order terms. The only terms of t
third order to be considered in this configuration of flo
would be those with the coefficientsby j j . The others can be
neglected because the genericbi jk is proportional toMi jk
and the termsMxyz and Mz j j can be taken equal to zer
because of the symmetry off (1) with respect toCz while the
terms Mx j j are proportional to the diffusive fluxes of th
property M j j and these can be evaluated as equal to z
~this will be shown in Sec. VIII B!.

However, the approximation of the expansion truncated
the second-order terms brings to quite complex expressi
and the truncation to the third-order terms is even wor
increasing the chances of computing errors. Conseque
we remained with the second-order truncation of thef (1) for
the following developments.

Therefore, the expressions~23! and ~24!–~24888! have
been used to calculate the general expressions forx i j and the
results, in the case of flow considered here@ux5ux(y), T
5T(y), byz5byz50], are reported in the Appendix. Th
calculations have been carried out taking into account
difference in the mean velocity between two colliding pa
ticles and all the derivatives of the mean quantities that
pear in f (1).

B. The evaluation ofM yii and M yxy

In the following, we will consider the averages over th
values cj.0 ~Sec. VII! of some particle properties
(cx ,cxcx ,cycy ,czcz). For the kind of flow discussed here
such averages can be approximated by the means ove
possible values ofc. Therefore, from Eqs.~26!, ~268!, and
(279), we obtain
4-12
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M yii5
1

n
3~diffusive flux of the propertyCiCi on the y direction!

5E CyCiCi f C
~1!~C,r ,t !dC5E Cycici f C

~1!~C,r ,t !dC2uiE Cyci f C
~1!~C,r ,t !dC2uiE Cyci f C

~1!~C,r ,t !dC

5A T

2p
~11byy!F]^cict&

]y
~ l y

y12 l y
y2!G22uiA T

2p
~11byy!F]^ci&

]y
~ l y

y12 l y
y2!G

5A T

2p
~11byy!F]^CiCi&

]y
~ l y

y12 l y
y2!G ,
from Eqs.~30! and ~32!, we calculate

l y
y12 l y

y252S Ky
y11Ky

y2

2 D tA2Tp
~112byy!

~11byy!

being

^cy
y1&* 5

*cy>0cy
2f ~1!~c,r ,t !dc

*cy>0cyf ~1!~c,r ,t !dc
5

A2Tp

2

~112byy!

~11byy!

52^cy
y2&*

andt j 15t j 25t.
Therefore,
r

e

ar
st

ic
o
e

ne
nt
.e
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M yii52A T

2p
~112byy!F]^CiCi&

]y
tA2TpS Ky

y11Ky
y2

2 D G .
In the caseKy

y15Ky
y251, it simplifies to

M yii52T~112byy!
]^CiCi&

]y
t.

Besides, from Eqs.~26!, ~268!, and (279), we can develop
the expression forM yxy ,
M yxy5Mxyy5
1

n
3~diffusive flux of the propertyCyCy on the x direction!

5A T

2p
~11bxx!F]^CyCy&

]x
~ l x

x12 l x
x2!G50.
the

fs.
C. Boundary conditions and the comparison
with the experimental data

The equation system~34!–~39!, once the expressions fo
the collisional sourcex i j , M y j j , andM yxy previously calcu-
lated have been introduced, is a system of ordinary differ
tial equations in the unknown functionsr(y), ux(y), T(y),
bxy(y), and two independents coefficients among thebii (y).
In these equations, the first derivatives ofr, ux , bxy and the
first and second derivatives ofT and the two coefficientsbii

are involved. Therefore, we have to specify the bound
conditions for all the unknown functions and for the fir
derivatives ofT and of two coefficientsbii .

Since the model applies to the translational regime, wh
is typical of the uppermost layer of a granular flow, it is n
so easy to provide ‘‘natural’’ boundary conditions for th
unknown functions or for some of their first derivatives. O
possibility is taking values from experimental measureme
Particularly, we used two sets of experimental data, i
n-

y

h
t

s.
.,

those of Azanza, Chevoir, and Moucheront@66# and those of
Drake@67#; the reason of this choice is that they present

FIG. 8. Sketch of the bidimensional configuration used in Re
@66# and @67# in their chutes; section at constantx.
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TABLE I. Boundary conditions for the chute flow. Values used in the comparison with the data of
@66# are reported in the third column, while in the fourth column data for the comparison with Ref.@67# are
listed.

Units

Boundary conditions

Comparison
with data

of Ref. @66#

Comparison
with data

of Ref. @67#

Solid volumetric fraction (n) 0.027 0.034
Granular temperature~T! m2/s2 0.145 0.265
X component of the mean velocity (ux) m/s 1.432 3.210
byy 20.026 20.058
bxx 0.052 0.116
bxy 20.337 20.525

]T

]y

m/s2 0 0

]bxx

]y

l/m 0 0

]byy

]y

l/m 0 0
,
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more detailed series of measurements on the chute flow
the best of our knowledge.

However, a problem is represented by the fact that b
used chutes with sidewalls so close to allow for only o
layer of particles~bidimensional channels!, while our model
is for three-dimensional channels, so the comparison
tween the experimental measures and theoretical results
be only approximate. Particularly, one of the differences
that the geometry chosen by Refs.@66#, @67# constraints the
particles to collide among each other only in a limited ran
of relative directions. In fact ifk, the unit vector connecting
the centres of two colliding particles~Fig. 8!, is written in
spherical coordinates,u is the angle betweenk andy, andw
is the angle between the projection ofk on thex-z plane and
x. Because of the constraints given by the sidewalls in
experimentsw approaches zero, while in a three-dimensio
geometry the particles can collide each other for any valu
w. Maybe this lower possibility of collision makes the flo
in the bidimensional configuration faster~greater gradients o
the mean velocity! than the flow in the three-dimension
geometry. Besides, other differences are the imper
smoothness of the particles experimentally used and the
fluence of the walls, which tends to slow down the flow.

The assumed boundary conditions are listed in Tabl
The basic criterion takes one experimental value at a gi
bed depth, from either Azanza, Chevoir, and Moucher
@66# ~results with the chute angle equal to 23°! or Drake@67#
~dilute flow!. In both cases, values have been taken at
boundary,y5yb , defined as the depth where the bidime
sional solid fraction~surface fraction! is around 0.1, so tha
we are sure to fall within the translational regime@66#: in the
case of Azanza, Chevoir, and Moucheront@66# the chosenyb
corresponds to (yb /D)510.5, in the case of Drake@67# it
corresponds to (yb /D)512. The values of the quantitie
used for the boundary conditions are the values measure
04130
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y5yb or an interpolation of the neighboring experimen
data.

However, further discussion is needed about the bound
conditions for the solid volumetric fraction, the two coeffi
cients bii , and the coefficientbxy . For the solid fraction,
experimental data are expressed as bidimensional solid
tion n2D ~particles surface on total surface! and they have
been converted in the tridimensional volumetric solid fra
tion n; we made the conversion through the approxim
expression of Campbell and Brennen@72#,

n5n2D
3/2 4

3Ap
.

Less obvious is the identification of appropriate bound
conditions for the two independent coefficients among
bii . Because of the bidimensional geometry, the experim
tal data forMzz turns out to be zero@and, according to Eq
~8!, the correspondingbzz would be always21/2#. This is
equivalent to the assumption of negligible velocity fluctu
tions in thez direction, a condition definitely not verified in
three-dimensional configuration.

Therefore, we cannot use values obtained from the exp
mental measures ofMii as boundary conditions for thebii .
So we have been forced to introduce approximate value
boundary conditions for thebii , from an approximate solu
tion of Eqs.~34!–~39!. In the hypothesis that only the inte
gralsE, Fa , Fb , Fc , Fi j are taken into account in the evalu
ation of x i j , Eqs.~38!, ~39! become

byy52
5~e21!

6~e23!
, ~40!

bxx522byy . ~41!
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METHOD OF MOMENTS FOR THE DILUTE GRANULAR . . . PHYSICAL REVIEW E 66, 041304 ~2002!
This result is obtained introducing in Eqs.~38!, ~39! the val-
ues of Table I for the other functions, particularly the deriv
tives of T and of the two coefficientsbii . Also the collision
interval t has to be evaluated to derive Eqs.~40! and ~41!:
the small values ofbxy ~see point D! allow to simplify t @Eq.
~31!# by the following:

t5
1

D2n4~pT!0.5@12 1
60 bxy

2 #
>

1

D2n4~pT!0.5.

The coefficientbxy is proportional toMxy @Eq. ~8!#. To our
knowledge, no experimental data of such a quantity can
found in literature, so that some estimate of a boundary va
for bxy must be obtained theoretically. An approximate d
termination of the boundary condition forbxy can be con-
structed from Eqs.~34! and~35!, consideringT constant with
respect toy, as it is shown by the experimental data@66,67#.
With this approximation, we obtained

n$tanq b112byyc1byy%5const, ~42!

which provides an equation relatingbxy to byy andn through
an unknown constant.

The constant can be evaluated using the experimental
ues at the top of the flowing material where the gradien
the mean velocity goes to zero. Since, according to the
ementary kinetic theory’’@Eq. (279)], bxy vanishes when the
gradient of the mean velocity approaches zero, we can ev
ate the constant of Eq.~42! at the surface of the flowing
material,

const5$n tanq b112byyc%surface.

Since Eq.~42! holds throughout the whole flowing layer, w
can use it to provide a value ofbxy at the bottom of the
translational regime,

bxy~yb!52tanq@112byy~yb!#1
~const!

n~yb!
, ~43!

where byy at yb and at the surface was calculated as
scribed above@Eq. ~40!#. From the experimental values, w
can calculate two distinct values of the constant,

~const!D

n~yb!
'531022,

in the case of Drake@67#.

constA /n~yb!'231022,

in the case of Azanza, Chevoir, and Moucheront@66#.
When we solve the system of ordinary differential equ

tions ~34!–~39! using for bxy at yb the approximate value
calculated by Eq.~43!, we obtain a value ofbxy at the top of
the flowing layer different from zero, in contrast with th
argument above. So we search in the surrounding of
value given by the Eq.~43! a new boundary condition forbxy
such that the solution of the system of ordinary differen
Eqs.~34!–~39! givesbxy vanishing at the top of the flowing
04130
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layer. The relative difference between this value and the
timate with the previous Eq.~43! has been always less tha
25%.

D. Results

To carry out the simulations,x i j must be evaluated
through the integrals in Eqs.~23! and~24!–~24888! , therefore
an expression forg0 @Eq. ~3!# is required. We used the Verle
and Levesque formula@73#,

g05
~1627n2D!

16~12n2D!2 , ~44!

however, the correction introduced by theg0 is small in the
translational regime. The system of ordinary differential E
~34!–~39! have been numerically integrated with the boun
ary conditions specified in Sec. VIII C. The values of t
physical and geometrical properties and parameters use
the simulations are reported in the Table II. The results
terms of profiles alongy, have been plotted and, when ava
able, compared with the experimental measurements.

The variation of the solid volumetric fraction measured
Azanza, Chevoir, and Moucheront@66# and Drake@67# is
reported in Fig. 9, together with the corresponding predict
of our model. The agreement is quite good considering
absence of adaptive parameters in the model and the us
some approximation. Particularly, the exponential increas
the void ratio towards the surface is correctly reproduc
Note that only the uppermost layer is reported, where
regime can be assumed to be purely transnational. The
gration of Eqs.~34!–~39! is done fromyb onwards, this be-
ing the depth from which clear transnational regime is o
served@66#. It is also evident that the model overestimat
the experimental solid fraction.

Mean velocity profiles are compared in Fig. 10. The me
sured parabolic profile is nicely reproduced by the mode
both cases, though the measurements of Azanza, Che
and Moucheront@66# are fairly noisy close to the surface o
the flowing bed. Theoretical mean velocities are alwa
smaller than measured. Note that, as far as the profiles o
solid volumetric fraction and the mean velocity are co
cerned, only their values at the boundaryyb are fixed~Table
I!, while their derivatives are always~also at the boundary!
calculated by the model and not imposed. The granular t

TABLE II. Values of the parameters and of the physical prop
ties in the experimental studies as reported by the authors. The
column refers to the data of Ref.@66# with the chute angle equal to
23°, while the fourth column refers to those of Ref.@67# in the case
of the dilute flow.

Units

Values of parameters

Ref. @66# Ref. @67#

Restitution coefficient 0.9560.03 0.8460.01
Chute angle rad 0.401 0.746
Particle diameter mm 3 6
Particle density kg/~m3! 7800 1319
4-15
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MATTEO STRUMENDO AND PAOLO CANU PHYSICAL REVIEW E66, 041304 ~2002!
perature calculated by our model is compared with the m
sured ones in Fig. 11. Interestingly, the model predicts
almost constant value throughout the whole transnatio
layer, even thoughtT is solved as a function ofy. Since also
the measurements show a constant behavior and we use
experimental datum as boundary condition~for T and its de-
rivative! the agreement is quite good. Some discrepancy
be seen with respect to the average results of Drake@67# in
the higher region of the considered layer but in any case
theoretical results fall inside the experimental uncertainty
ported in Ref.@67#.

In Fig. 12 the theoretical profile forM yy /Mxx is pre-
sented. Results of the simulation, corresponding to the
periments of Azanza, Chevoir, and Moucheront@66#, are la-
beled by A in Fig. 12 and show an almost constant trend
in the experimental work@66#. The values predicted by th
model, around 0.83–0.86, are different with respect to
measurements, that range between 0.55 and 0.6. The re
of this difference has to be sought in the observations m

FIG. 9. Solid volumetric fraction profile in the translation
layer of a granular flow down an inclined chute: theoretical res
vs experimental data of Ref.@66# ~circles! and Ref.@67# ~squares!.

FIG. 10. X component of the mean velocity profile in the tran
lational layer of a granular flow down an inclined chute: theoreti
results vs experimental data of Ref.@66# at the left and those of Ref
@67# at the right.
04130
a-
n
al

one

n

e
-

x-

s

e
son
e

in Sec. VIII C. There, we discussed some discrepancies
tween the system simulated by the theoretical model, i.e.,
tridimensional chute flow with negligible walls influence~z-
independent flux! and the bidimensional~only one layer of
particles! experimental chute@66,67#. Particularly, in the ex-
perimental configurationMzz50, while in the tridimensional
chute flow Mzz is clearly different from zero. So, for the
same value of the particle internal energy@one measure of
which is (3/2)Tm], i.e., for the same value of the granula
temperatureT, the way in which the total internal energ
splits into its components (Mxx ,M yy ,Mzz) in the bidimen-
sional experiments and in the tridimensional model are
pected to be similar only in a qualitative manner. Accordi
to this, we purposely rejected~Sec. VIII C! the experimental
boundary conditions forbyy and for bxx ~i.e., for M yy and
Mxx) as measured in a bidimensional configuration. A
Drake @67# reports for the ratioM yy /Mxx a nearly constant
value comprised between 0.39 and 0.51, while our mo

s

l

FIG. 11. Granular temperature profile in the translational la
of a granular flow down an inclined chute: theoretical results
experimental data of Ref.@66# ~circles! and of Ref.@67# ~squares!.
The bars indicate the experimental errors in Ref.@67#.

FIG. 12. M yy /Mxx profile in the translational layer of a granula
flow down an inclined chute: model predictions of the experime
of Ref. @67# ~line D! and of Ref.@66# ~line A!.
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METHOD OF MOMENTS FOR THE DILUTE GRANULAR . . . PHYSICAL REVIEW E 66, 041304 ~2002!
predicts values between 0.69 and 0.79, as shown by line
Fig. 12.

In Fig. 13 we reported the theoretical profiles for bo
M yy andMxx obtained using parameters and boundary c
ditions corresponding to the experiments of Azanza, Chev
and Moucheront@66#. Like in the experimental work, both
show a constant behavior. Moreover,M yy ~and alsoMzz) is
always smaller thanT, while Mxx is always greater, i.e., th
degree of the fluctuations along thex coordinate is greate
than the degree of the fluctuations along any other direct
In other words, the translational pressures in the three di
tions predicted by the model are not equal and the gran
matter is not in an hydrostatic state. Similar results have b
obtained in the comparison with Ref.@67#.

Finally, the theoretical profiles of the coefficientbxy , pro-
portional to the diffusive momentum fluxrMxy according to
Eq. ~8!, are shown in Fig. 14; unfortunately there are
experimental determinations available to compare with.
Fig. 14 line D refers to the simulation of the experiments
Drake@67#, line A to those of Ref.@66#. In both cases,bxy is
negative, i.e.,rMxy is correctly opposite to they direction.
Besides, the absolute value ofbxy decreases monotonicall
from the boundary condition fixed atyb ~Table I! down to
zero at the free surface. The behavior ofbxy can be compared
with the evaluation of the coefficientbxy obtained by means
of the ‘‘elementary kinetic theory,’’ that we namebxy* . In
fact, calculating the diffusive flux alongy of the x momen-
tum (mcx) by Eqs.~2788!–~30! and dividing it byr and byT
@Eq. ~8!#, one obtains,

bxy* 52
]ux

]y
t~112byy!, ~45!

with t j 15t j 25t and Ky
y15Ky

y251. The profiles ofbxy*
can be calculated introducing the simulation results of
derivative ofux , n, T, bxy , and byy in Eq. ~45!. They are
also reported in Fig. 14 where circles refer to the simulatio
of the experiments of Ref.@66#, squares to those of Ref.@67#.
In any case there is a good agreement betweenbxy and the

FIG. 13. Mxx and M yy profiles in the translational layer of
granular flow down an inclined chute: model predictions of t
experiments of Ref.@66#.
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estimatebxy* , once more validating the detailed model dev
oped. In this work the model has been compared with exp
mental data from Refs.@66#, @67#, having dissimilar values of
the operating conditions~chute angle! and physical proper-
ties ~particle diameter and density, restitution coefficien!;
different values of the parameters should be considered
well, above all lower restitution coefficients. Also the a
proximation used for thef (1) should be tested for highly
dissipative particles. Besides, the consistency of the mo
should be verified with experimental measures free~as far as
possible! from the limitations of the bidimensional geometr

IX. CONCLUSIONS

The present work is devoted to modeling the rapid gra
lar flows of smooth, identical spheres by means of the kine
approach~granular temperature!. In this field, while the basic
concepts of the theory have been definitely explained, furt
efforts are needed in two directions.

The first is a departure from hypotheses valid only
ideal situations. In this sense, after having approximated
particle velocity distribution functionf (1) by an expansion in
Hermite polynomials around the Maxwellian truncated to t
second order, we developed the collisional source term c
pletely ~not only in the integrals corresponding to the nea
elastic limit!; moreover, the variation of the mean veloci
between the two colliding particles has been taken into
count. Besides, together with the mass and momentum
ances, all the second-order moment balances have been
sidered @59#: these equations require the introduction
closure equations for the third-order moments~and their de-
rivatives!. Closure equations have been developed for
(N11)th-order moments~and their derivatives! to be used if
the Nth-order moment balances are considered, by a ge
alization of the ‘‘elementary kinetic theory’’ and specifical
with a f (1) described by the Hermite expansion and w

FIG. 14. Profile of the coefficientbxy in the translational layer
of a granular flow down an inclined chute. Referring to the expe
ments of Ref.@66#, line A are the model predictions and circles a
the predictions of Eq.~45!; referring to the experiments of Ref
@67#, line D are the model predictions and squares are the pre
tions of Eq.~45!.
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nonzero components of the mean velocity.
The second direction is to test the theoretical profiles w

experimental data. We applied the model to the translatio
flow on an inclined chute and the simulations yielded
profiles of the solid volumetric fraction, the mean veloci
and all the second-order moments, expressed as gra
temperature and coefficients of the approximatedf (1).

The experimental data of Azanza, Chevoir, and Mouch
ont @66# and of Drake@67# have been considered, althoug
they were obtained with a flow of just one layer of particl
constrained by the walls~bidimensional geometry!, so the
comparison is only approximate. All the qualitative featur
of the flow are represented by the model: the decrea
~exponential! profile of the solid volumetric fraction, the
parabolic shape of the mean velocity, the constancy of
granular temperature and of its three components^CiCi&.
Moreover, the model predicts nonequal normal pressure
the three spatial directions@59#, which are connected with
the anisotropy of the velocity distribution function.

APPENDIX

In this appendix some results useful for the resolution
the integrals of the termx(mCiCj ) @74# and to express the
closure equations~Sec. VII! are reported. First, let us con
sider two spherical particles of diameterD and massm ~Fig.
1! among which an impact is happening; ifc1 andc2 are the
actual velocities of the particles 1 and 2 before the impactc18
andc28 the actual velocities of the particles 1 and 2 after
impact andg[c12c2 , g8[c182c28 , k the unit vector di-
rected from the center of the particle 1 to the center of
particle 2, some basic relations are@47#

c185c12 1
2 ~11e!~g•k!k, ~A1!

c285c11 1
2 ~11e!~g•k!k, ~A2!

which can be written in terms of the fluctuant velocitiesC1 ,
C2 ~before the impact!, C18 , C28 ~after impact!,

C185C12 1
2 ~11e!~g•k!k, ~A3!

C285C21 1
2 ~11e!~g•k!k. ~A4!

From these equations one can obtain that

C1i8 C1 j8 2C1iC1 j5
1
2 ~11e!~g•k!@ 1

2 ~11e!

3~g•k!kikj2~kiC1 j1kjC1i !#,

~A5!

C2i8 C2 j8 2C2iC2 j5
1
2 ~11e!~g•k!@ 1

2 ~11e!

3~g•k!kikj1~kiC2 j1kjC2i !#.

~A6!

The variation during an impact of the product of the fluctua
velocities of the two particlesD(CiCj ) is given by the sum
of Eqs.~A5! and ~A6!,
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D~CiCj !5$~11e!~g•k!kikj2 bki~gj2u1 j1u2 j !c
2 bkj~gi2u1i1u2i !c% 1

2 ~11e!~g•k!. ~A7!

A Taylor expansion truncated to the first term has been u
in the evaluation ofx(mCiCj ) to express the difference in
the mean velocity components, namely,

u2 j2u1 j5S ]uj

]r k
kkDD,

and similarly fori component.
Besides, the following results have been used for the

pressions of the closure equations~Sec. VII!. With Y
5(ci /A2T2ui /A2T),

E
0

1`

e2~2ui /A2T1ci /A2T!2
dci5A2TE

2ui /A2T

1`

e2Y2
dY,

E
0

1`

cie
2~2ui /A2T1ci /A2T!2

dci

5uiA2TE
ui /A2T

1`

e2Y2
dY12TE

2ui /A2T

1`

e2Y2
dY,

E
0

1`

ci
2e2~2ui /A2T1ci /A2T!2

dci

5ui
2A2TE

2ui /A2T

1`

e2Y2
dY14TuiE

2ui /A2T

1`

Ye2Y2
dY

1~T2!3/2E
2ui /A2T

1`

Y2e2Y2
dY

and, if ui50,

E
0

1`

e2~2ui /A2T1ci /A2T!2
dci5

1

2
~2pT!1/2,

E
0

1`

cie
2~2ui /A2T1ci /A2T!2

dci5T,

E
0

1`

ci
2e2~2ui /A2T1ci /A2T!2

dci5Ap2T
T

2
.

4-18



l.

it

a

l.

th

-

,

f
e,

-

al

, J.

al.

h.

-

,

en-

METHOD OF MOMENTS FOR THE DILUTE GRANULAR . . . PHYSICAL REVIEW E 66, 041304 ~2002!
@1# R. A. Bagnold, Proc. R. Soc. London, Ser. A255, 49 ~1954!.
@2# J. T. Jenkins and S. B. Savage, J. Fluid Mech.130, 187~1983!.
@3# V. V. Sokolovskij, Statics of Granular Media~Pergamon, Ox-

ford, 1965!.
@4# D. C. Drucker and W. Prager, Q. Appl. Math.10, 157 ~1952!.
@5# G. Mandl and R. F. Luque, Geotechnique20, 277 ~1970!.
@6# M. Sayed and S. B. Savage, J. Appl. Math. Phys.34, 84

~1983!.
@7# P. C. Johnson, P. Nott, and R. Jackson, J. Fluid Mech.210, 501

~1990!.
@8# P. C. Johnson and R. Jackson, J. Fluid Mech.176, 67 ~1987!.
@9# S. C. Cowin, Powder Technol.9, 61 ~1974!.

@10# S. C. Cowin, Acta Mech.20, 41 ~1974!.
@11# S. C. Cowin and M. A. Goodman, Z. Angew. Math. Mech.56,

281 ~1976!.
@12# M. A. Goodman, Ph.D. thesis, Tulane University, 1970~un-

published!.
@13# M. A. Goodman and S. C. Cowin, J. Fluid Mech.45, 321

~1971!.
@14# M. A. Goodman and S. C. Cowin, Arch. Ration. Mech. Ana

44, 249 ~1972!.
@15# J. T. Jenkins, J. Appl. Mech.42, 603 ~1975!.
@16# D. Coleman and V. J. Mizel, J. Chem. Phys.40, 1116~1966!.
@17# J. Serrin, J. Math. Mech.8, 459 ~1959!.
@18# S. C. Cowin, Ph.D. thesis, The Pennsylvania State Univers

1962 ~unpublished!.
@19# S. C. Cowin, Phys. Fluids11, 1919~1968!.
@20# K. Kanatani, Int. J. Eng. Sci.17, 419 ~1979!.
@21# A. C. Eringen, Nonlinear Theory of Continuous Medi

~McGraw-Hill, New York, 1962!.
@22# A. C. Eringen, Int. J. Eng. Sci.2, 205 ~1964!.
@23# A. C. Eringen and E. S. Suhubi, Int. J. Eng. Sci.2, 189~1964!.
@24# A. C. Eringen and C. B. Kafadar, inContinuum Physics IV,

edited by A. C. Eringen~Academic Press, New York, 1976!.
@25# R. D. Mindlin, Arch. Ration. Mech. Anal.16, 51 ~1963!.
@26# T. Ariman, A. S. Cakmak, and L. R. Hill, Phys. Fluids10, 2545

~1967!.
@27# G. Capriz, Continua with Microstructure~Springer-Verlag,

New York, 1989!.
@28# G. Grioli, 1960, Ann. Mat. Pura Appl. Ser. IV50, 389 ~1960!.
@29# D. W. Condiff and J. S. Dahler, Phys. Fluids7, 842 ~1964!.
@30# D. W. Condiff, W. K. Lu, and J. S. Dahler, J. Chem. Phys.42,

3445 ~1965!.
@31# R. D. Mindlin and H. F. Tiersten, Arch. Ration. Mech. Ana

11, 415 ~1962!.
@32# R. Tiffen and A. C. Stevenson, Q. J. Mech. Appl. Math.9, 306

~1956!.
@33# R. A. Toupin, Arch. Ration. Mech. Anal.11, 385 ~1962!.
@34# V. K. Stokes, Phys. Fluids9, 1709~1966!.
@35# O. Pouliquen and R. Gutfraind, Phys. Rev. E53, 552 ~1996!.
@36# A. C. Santomaso and P. Canu, Chem. Eng. Sci.56, 3563

~2001!.
@37# C. S. Campbell, J. Fluid Mech.203, 449 ~1989!.
@38# D. M. Hanes and O. R. Walton, Powder Technol.109, 133

~2000!.
@39# S. Ogawa, A. Umemura, and N. Oshima, Z. Angew. Ma

Phys.31, 483 ~1980!.
@40# S. Ogawa, in Continuum Mechanical and Statistical Ap

proaches in the Mechanics of Granular Materials, edited by S.
04130
y,

.

C. Cowin and M. Satake~Gakujutsu Bunken Fukyukai, Tokyo
1978!.

@41# P. K. Haff, J. Fluid Mech.134, 401 ~1983!.
@42# S. Chapman and T. G. Cowling,The Mathematical Theory o

Non-Uniform Gases~Cambridge University Press, Cambridg
1970!.

@43# J. H. Ferziger and H. G. Kaper,Mathematical Theory of Trans
port Processes in Gases~North-Holland, Amsterdam, 1972!.

@44# F. Reif, Fundamentals of Statistical Mechanics and Therm
Physics~McGraw-Hill, New York, 1965!.

@45# S. B. Savage and D. J. Jeffrey, J. Fluid Mech.110, 225~1981!.
@46# C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy

Fluid Mech.140, 223 ~1984!.
@47# J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. An

87, 355 ~1985!.
@48# C. K. K. Lun, J. Fluid Mech.233, 539 ~1991!.
@49# S. B. Savage and C. K. K. Lun, J. Fluid Mech.189, 311

~1988!.
@50# S. B. Savage, J. Fluid Mech.92, 53 ~1979!.
@51# K. G. Anderson and R. Jackson, J. Fluid Mech.241, 145

~1992!.
@52# M. W. Richman and R. P. Marciniec, J. Appl. Mech.57, 1036

~1990!.
@53# M. Massoudi and E. J. Boyle, Int. J. Non-Linear Mech.36, 637

~2001!.
@54# S. Warr, J. M. Huntley, and G. T. H. Jacques, Phys. Rev. E52,

5583 ~1995!.
@55# P. Nott and R. Jackson, J. Fluid Mech.241, 125 ~1992!.
@56# K. Hui, P. K. Haff, J. E. Ungar, and R. Jackson, J. Fluid Mec

145, 223 ~1984!.
@57# J. T. Jenkins and M. W. Richman, J. Fluid Mech.171, 53

~1986!.
@58# C. Chou, Physica A287, 127 ~2000!.
@59# M. W. Richman, J. Rheol.33„8…, 1293~1989!.
@60# I. Goldhirsch and N. Sela, Phys. Rev. E54, 4458~1996!.
@61# N. Sela and I. Goldhirsch, J. Fluid Mech.361, 41 ~1998!.
@62# A. Goldshtein and M. Shapiro, J. Fluid Mech.282, 75 ~1995!.
@63# H. Grad, Commun. Pure Appl. Math.2, 331 ~1949!.
@64# H. M. Hulburt and S. Katz, Chem. Eng. Sci.19, 555 ~1964!.
@65# E. H. Kennard,Kinetic Theory of Gases~McGraw-Hill, New

York, 1938!.
@66# E. Azanza, F. Chevoir, and P. Moucheront, J. Fluid Mech.400,

199 ~1999!.
@67# T. G. Drake, J. Fluid Mech.225, 121 ~1991!.
@68# S. B. Savage, inContinuum Mechanical and Statistical Ap

proaches in the Mechanics of Granular Materials, edited by S.
C. Cowin and M. Satake~Gakujutsu Bunken Fukyukai, Tokyo
1978!.

@69# M. Ishida and T. Shirai, J. Chem. Eng. Jpn.12, 46 ~1979!.
@70# H. Ahn, C. E. Brennen, and R. H. Sabersky, J. Appl. Mech.58,

792 ~1991!.
@71# N. F. Carnahan and K. E. Starling, J. Chem. Phys.51, 635

~1969!.
@72# C. S. Campbell and C. E. Brennen, J. Fluid Mech.151, 167

~1985!.
@73# L. Verlet and D. Levesque, Mol. Phys.46, 969 ~1982!.
@74# See EPAPS Document No. E-PLEEE8-66-061210 for App
4-19



he
an

e

age

ore

MATTEO STRUMENDO AND PAOLO CANU PHYSICAL REVIEW E66, 041304 ~2002!
dix B, containing the analytical results for the evaluation of t
collisional source of the second-order moments of fluctu
velocitiesx(mCiCj ). A direct link to this document may be
found in the online article’s HTML reference section. Th
04130
t
document may also be reached via the EPAPS homep
~http://www.aip.org/pubservs/epaps.html! or from ftp.aip.org
in the directory /epaps/. See the EPAPS homepage for m
information.
4-20


